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Biologically active, passive treatment systems are commonly employed for removing high concentrations of
dissolved Mn(II) from coal mine drainage (CMD). Studies of microbial communities contributing to Mn
attenuation through the oxidation of Mn(II) to sparingly soluble Mn(III/IV) oxide minerals, however, have
been sparse to date. This study reveals a diverse community of Mn(II)-oxidizing fungi and bacteria existing in
several CMD treatment systems.

Acidic, metal-laden mine drainage is a significant problem
for many regions in the United States and throughout the
world. In Appalachia, centuries of coal mining has left thou-
sands of abandoned mines that are discharging waters contain-
ing elevated levels of metals—particularly Mn, with concentra-
tions as high as 150 mg liter�1 (see reference 9 and references
therein and reference 23). In the eastern United States, one of
the most common methods to remediate coal mine drainage
(CMD) is the use of biologically active limestone treatment
beds. In essence, dissolved metals, such as Mn(II), are immo-
bilized in the treatment bed via precipitation of sparingly sol-
uble oxide minerals (23, 24) that effectively remove other metal
contaminants (e.g., Ni, Co, and Zn) through coprecipitation
and surface adsorption reactions (26, 31, 47).

The importance of microbial activity in the remediation of
Mn-contaminated waters has frequently been observed (6, 20,
21, 24, 25). Several strains of Mn(II)-oxidizing bacteria have
even been used for treating manganiferous mine waters (49).
Recently Mariner et al. (32) identified Mn(II)-oxidizing fungi,
in addition to bacteria, successfully growing in a Mn-attenuat-
ing bioreactor for treatment of mine waters. We also observed
that the addition of fungicides inhibited Mn(II) oxidation in
laboratory-based CMD treatment simulations (W. D. Burgos,
H. Tan, C. M. Santelli, and C. M. Hansel, presented at the
National Meeting of the American Society of Mining and Re-
clamation, Pittsburgh, PA, 5 to 11 June 2010), suggesting a role
for fungal activity in Mn remediation. The identities, growth
characteristics, and oxidation mechanisms of the microbial
community contributing to CMD remediation, however, re-
main largely unresolved. The objective of this study was to

define the Mn(II)-oxidizing microbial community existing in
passive treatment systems designed to remove dissolved
Mn(II) from CMD. Because the mechanisms of microbial
Mn(II) oxidation are not fully elucidated and are not geneti-
cally tractable (13, 18), we initiated an extensive culture survey
to identify microorganisms that catalyze Mn(II) oxidation and
precipitate Mn(III/IV) oxide minerals. These results provide
the foundation for future explorations identifying the key play-
ers in CMD remediation and factors impacting their activity.

In October 2007, we sampled four Mn attenuation beds—
Saxman Run (SRC1) and DeSale phases I, II, and III (DS1 to
DS3)—in central Pennsylvania that are currently treating ex-
ceptionally high Mn concentrations (up to 119 mg liter�1; 2.2
mM) generated from abandoned coal mines. Each system has
a slightly different design (for a further description, see refer-
ence 21) and treatment load; however, all systems have wet-
lands and limestone-filled beds (to raise pH) in series. At the
time of sampling, waters flowing into SRC1 had a near-neutral
pH (6.6) and dissolved Mn was 28 mg liter�1 (500 �M). SRC1
was highly effective in removing dissolved Mn where the efflu-
ent had �0.05 mg liter�1 Mn (data courtesy of the Pennsylva-
nia Department of Environmental Protection). Systems DS1 to
DS3 treat waters with a pH range of 5.7 to 6.3, containing 46
to 119 mg liter�1 (0.85 to 2.2 mM) Mn, and each attenuates
about 50% of the total Mn load.

Culture enrichments were initiated using Mn oxide-coated
limestone and debris from the treatment systems. Serial dilu-
tions to 1/104 for each sample were plated on 7 types of agar-
solidified media with 20 mM HEPES (pH 7) and 200 �M
MnCl2: AY (34); K, M, and Leptothrix (46); J and J plus
acetate (22); and medium 3 (11). Mn(II)-oxidizing microor-
ganisms were transferred to fresh media until cultures were
deemed axenic. Mn(III/IV) oxides were confirmed using the
LBB colorimetric assay (28) and electron microscopy (not
shown).

Fungal isolates were identified using a combination of phy-
logenetic analysis and morphological characterization (Table
1), and bacteria were identified through phylogenetic analysis.
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For morphological characterizations, fungi were grown on AY,
potato dextrose agar, and malt extract agar for up to 12 weeks
to induce sporulation. Isolates producing conidiogenous struc-
tures were examined using light microscopy to confirm species-
level identifications. For phylogenetic analysis, genomic DNA
of each culture was isolated, amplified by PCR, and sequenced.
Bacterial 16S rRNA was amplified with the primers 8F/1492R
using protocols described previously (38). The 18S rRNA gene,
28S rRNA gene, and ITS1-5.8S rRNA-ITS2 region (referred to
as ITS) were amplified from fungal isolates using primer pairs
NS1/NS302 and NS3/NS5 (42), LR0R/LR5-F (45), and ITS1F/
ITS4 (35), respectively. Sequences were imported into the
BLAST nucleotide search program (2), and ARB software (30)
was used to align sequences (isolates and related organisms)
and construct phylogenetic trees for representative species (99
to 100% sequence similarity). 18S rRNA analysis was used for
related species comparisons, whereas ITS served as a bar code
for species-level resolution when a sufficient database was
present (reference 40 and references therein).

Results of the culture survey show that a diversity of Mn(II)-
oxidizing fungi and bacteria exist in Mn attenuation systems

that actively treat CMD. Mn(II)-oxidizing fungi, isolated from
each of the Mn removal beds, represent �90% of the nearly
100 axenic cultures obtained from the enrichments (Table
1). Phylogenetic analysis of these fungi reveals 9 different
species (Fig. 1a and Table 1; see also Fig. S1 to S4 in the
supplemental material) belonging to two classes (Sordario-
mycetes and Dothideomycetes) of the phylum Ascomycota.
The two most widely recovered Mn(II)-oxidizing fungi are
isolate DS2psM2a2, identified as Plectosphaerella cucumerina
(Table 1; see also Fig. S1a), and isolate DS2rAY2a, identified
as Stilbella aciculosa (Table 1; see also Fig. S1b). Although
both of these Sordariomycetes are common, well studied (4,
29; for examples, see references 36 and 50) soil-inhabiting
microorganisms (10), neither has previously been demon-
strated to oxidize Mn(II), nor is either phylogenetically re-
lated to known Mn(II)-oxidizing species (Fig. 1a). Two
additional Sordariomycetes were obtained, Acremonium
strictum (isolate DS1bioAY4a) (Table 1; see also Fig. S1b) and
Microdochium bolleyi (isolate SRC1dJ1a) (Table 1; see also
Fig. S2a). Interestingly, both of these fungal isolates are closely
related (based on ITS and 18S rRNA sequence analysis) to

TABLE 1. Mn(II)-oxidizing fungi and bacteria isolated from CMD passive treatment systems

Species identification Representative
isolate

Morphological description for species-level
identification of fungus

No. of isolates from site Mn2�

tolerance
(mM)

Growth rateb at
Mn2� concn (mM)

of:

DS1 DS2 DS3 SRC1 0 0.5 1

Fungi
Plectosphaerella cucumerina DS2psM2a2 Conidiophores (tapered, 1-septate)

after 2 weeks growth
9 13 —a 27 �10 4.6 4.7 4.6

Microdochium bolleyi SRC1dJ1a Pink with chlamydospores (chain) and
conidia (straight to slight crescent
shape, �8-�m length)

— — — 10 1 7.9 8.4 7.7

Stilbella aciculosa DS2rAY2a Hyphal conidia (�4 by 12–15 �m,
cylindrical, sometimes septate);
synemmata with conidia
(nonseptate, tapered, ellipsoid, �6-
�m length)

2 11 — — �10 4.3 4.3 4.1

Pyrenochaeta sp. DS3sAY3a Pycnidia (dark-brown/black, setae
near the osteole) filled with conidia
(�2.4 �m by 4.8 �m, near globose,
slipper-shaped, two-gutulate)

— — 2 — �10 3.3 3.4 3.4

Stagonospora sp. SRC1lsM3a No spores or reproductive structures
produced after 5 months

— — — 1 �10 1.9 2.1 2.5

Alternaria alternata SRC1lrK2f Chains (long, often branching) of
ornamented conidia; conidiophores
(long, 1- to 3-septate, straight to
curved)

— — — 2 �10 8.3 7.8 7.8

Acremonium strictum DS1bioAY4a Slimy and orange mycelial mat with
gelatinous masses filled with
conidia (�4–5-�m length)

4 1 — — �10 1.2 1.4 1.9

Pithomyces chartarum DS1bioJ1b Conidia (dark brown/black, muriform,
verruculose, �22–24-�m length)

1 — — — 5 6.9 7.4 7.7

Phoma sp. DS1wsM30b Chlamydospores (slightly pigmented,
nearly globose, �4–15-�m width,
longitudinal septa absent)

1 — — — �10 7.4 7.2 7.2

Bacteria
Agrobacterium sp. SRC1K2fb — — — 1 �10 0.03 0.04 0.03
Bacillus sp. DS3sK3a — 3 2 — �10 0.04 0.04 0.04
Flavobacterium sp. DS2psK4b — 1 — — �10 0.05 0.05 0.05
Pseudomonas sp. DS3sK1h — — 2 — �10 0.05 0.03 0.03

a —, no isolates obtained.
b Growth rates for fungi (mm/day) were determined by measuring the increase in diameter with time. Growth rates for bacteria (OD600/h) were determined by

measuring the optical density at 600 nm (OD600) with 200 �M ascorbic acid to dissolve Mn(III/IV) oxides. Rates were determined during exponential growth phase.
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other known Mn(II)-oxidizing species, suggesting that some
Mn(II)-oxidizing species have a cosmopolitan distribution. Mi-
crodochium bolleyi and Acremonium strictum sequences are
very similar (Fig. 1a) to those of Mn(II)-oxidizing Xylariales

sp. UB32-1 (98% similarity, 18S rRNA) and Acremonium sp.
KR21-2 (100% similarity, ITS), respectively, isolated from a
stream bed in Japan (33, 34).

All other Mn(II)-oxidizing fungal isolates are classified as

FIG. 1. Maximum-likelihood (ML) trees showing the phylogenetic relationships of Mn(II)-oxidizing fungi (a) or bacteria (b) isolated from Mn
treatment systems using 18S rRNA and 16S rRNA gene analysis, respectively. Isolates from this study are shown in bold and boxed, and previously
identified Mn(II)-oxidizing isolates are in bold and unboxed. Both ML trees were constructed with the PhyML software package (19) in ARB using
the generalized time reversible (GTR) nucleotide substitution model with 1,000 bootstrap replicates. Bootstrap values for nodes with greater than
50% support are displayed as percentages. GenBank accession numbers are in parentheses. Scale bar, 0.05 (a) or 0.10 (b) substitutions per
nucleotide site.
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Pleosporales (Dothideomycetes class), although neither phylo-
genetic analysis nor morphological characterization could con-
firm the identification of several of these beyond the genus
level. Two of these isolates do not have sequences with simi-
larity to those of known Mn(II)-oxidizing species: DS3sAY3a,
a Pyrenochaeta sp., and SRC1lrK2f, identified as Alternaria
alternata (Table 1 and Fig. 1a; see also Fig. S4a and S4b in the
supplemental material). Conversely, most of these species are
related to other known Mn(II)-oxidizing strains. For example,
isolate SRC1lsM3a, a Stagonospora sp. (Table 1; see also Fig.
S2b), is related to two different Mn-oxidizing strains (Fig. 1a,
99% similarity): Pleosporales sp. IRB20-1 (33), isolated from a
Japanese stream bed, and Pleosporales sp. RMF2, isolated
from a prototype bioreactor treating Mn-contaminated mine
waste in Wales, United Kingdom (32). Likewise, isolate
DS1wsM30b, a Phoma sp. (Table 1; see also Fig. S3a), has high
sequence similarity (�98%, 18S) with Phoma sp. KMF1 from
the Mn bioreactor and Phoma sp. KY-1, isolated from stream
sediment (42). Pithomyces chartarum isolate DS1bioJ1b (Table
1; see also Fig. S3b) is 99% similar to Mn(II)-oxidizing Para-
coniothyrium sp. WL-2, isolated from an artificial wetland in
Japan (42), and Pleosporales sp. UB32-2, isolated from a Jap-
anese stream bed (33); however, ITS analysis shows only 88%
similarity to Paraconiothyrium sp. WL-2 (the ITS sequence for
UB32-2 is not publically available).

Although relatively few Mn(II)-oxidizing bacteria were re-
covered from the treatment systems, these isolates present
similar phylogenetic diversity: 9 bacterial isolates represent 4
taxa (Fig. 1b and Table 1) belonging to three different phyla:
Firmicutes, Bacteroidetes, and Proteobacteria (Alpha- and Gam-
maproteobacteria). Bacillus spp., represented by isolate
DS3sK3a, are the most commonly recovered bacteria (Table
1). It is not surprising to recover Bacillus species from the
treatment systems, because they are the most commonly iso-
lated Mn(II)-oxidizing bacteria (12, 16) for marine systems as
well. Isolate DS3sK1h, a Pseudomonas sp., is similarly related
to other previously identified Mn(II)-oxidizing bacteria, such
as P. putida strain MnB1 and Pseudomonas sp. LOB-2, isolated
from the deep ocean (�97% sequence similarity; Fig. 1b) (46).

Two previously unreported Mn(II)-oxidizing bacterial
species were also recovered: Agrobacterium sp. (isolate
SRC1K2fb), an alphaproteobacterium, and Flavobacterium sp.
(isolate DS2psK4b), a member of the Bacteroidetes (Table 1
and Fig. 1b). The isolation of a Flavobacterium sp. further
expands the taxonomic representation of Mn oxidizers—to our
knowledge, members of the Bacteroidetes have never been
demonstrated to oxidize Mn(II). Alphaproteobacteria, on the
other hand, account for a large portion of cultured Mn(II)-
oxidizing bacterial representatives (3, 15, 22, 44, 46) and other
metal-oxidizing bacteria (39).

Microbial communities living in CMD treatment systems are
exposed to widely fluctuating environmental conditions and
metal concentrations; therefore, the ability to tolerate and
grow in various Mn concentrations was tested for all isolates.
Fungi and bacteria were grown in media supplemented with
Mn2� at the following concentrations: 0, 0.5, 1, 5, and 10 mM
MnCl2. Our results show that all isolates, with the exception of
Microdochium bolleyi and Pithomyces chartarum, grew and ox-
idized Mn(II) at Mn concentrations greater than those ob-
served in the treatment systems (Table 1). Metal tolerance of

bacterial strains was somewhat unexpected since it is generally
believed that fungi are more tolerant than bacteria to high
concentrations of heavy metals, often leading to a prevalence
of fungi in metal-contaminated soils (7, 8, 27, 37). It is possible
that these bacterial strains have developed metal tolerance in
the treatment systems; the development of Mn tolerance has
been observed previously (1) in the Mn(II)-oxidizing bacte-
rium Leptothrix discophora.

Mn(II) exposure experiments also show that growth rates (Ta-
ble 1) remain constant with various metal concentrations for
many of the isolates (e.g., Microdochium bolleyi and Bacillus sp.),
even at 10 mM Mn concentrations (data not shown). Some spe-
cies, however, grow fastest at lower Mn(II) concentrations (e.g.,
Stilbella aciculosa), whereas others had increased growth rates at
high Mn concentrations that were even more pronounced at 10
mM Mn (e.g., Stagonospora sp., 3.5 mm/day). Decreased (5) or
similar (34, 41) growth rates at higher dissolved Mn(II) concen-
trations have previously been observed for many nonoxidizing
and Mn-oxidizing ascomycota and bacteria (14, 22), suggesting a
possible toxic effect of high metal concentrations. Faster growth at
very high Mn(II) concentrations, however, is somewhat surpris-
ing, although small concentrations have stimulated growth of
some Mn-oxidizing bacteria relative to metal-free conditions (14,
15). Since fungi and all known Mn(II)-oxidizing bacteria are het-
erotrophs and therefore do not gain energy from the oxidation
reaction, these organisms may be benefiting from either the pres-
ence of Mn oxide minerals (e.g., scavenging of nutrients, immo-
bilization of metals, or UV protection) or potentially an increased
uptake of dissolved Mn(II) for cellular functions or scavenging of
reactive oxygen species (see reference 43 and references therein).

Here we introduce new bacterial and fungal players in the
oxidation of Mn(II). We also reveal a diversity and predomi-
nance of fungi within culturable Mn(II)-oxidizing communities
in CMD passive treatment systems. It is not entirely unex-
pected to obtain fungi in such environments, since fungi often
possess multiple mechanisms to tolerate environmental
stresses (e.g., nutrient fluctuations, desiccation, or high metal
loading). Consequently, it is becoming increasingly evident
that fungi represent great (and often overlooked) potential for
the remediation of a wide range of pollutants, including metals
(for examples, see references 17 and 48). The results in this
and previous studies (32; Burgos et al., presented at the Na-
tional Meeting of the American Society of Mining and Recla-
mation, 2010) suggest fungi also contribute to the remediation
of Mn-contaminated mine drainage, warranting continued in-
vestigations of the cultivated Mn(II)-oxidizing fungi. Future
investigations of these organisms revealing the mechanisms of
Mn(II) oxidation and the factors influencing optimal growth
and activity will greatly aid the engineering of efficient systems
for CMD bioremediation and likely beyond.

Nucleotide sequence accession numbers. Sequences were
submitted to the GenBank database with the following accession
numbers: 16S rRNA genes, HM216202 to HM216205; 18S rRNA
genes, HM216184 to HM216192; 28S rRNA genes, HM216193 to
HM216201; and ITS region, HM216206 to HM216214.
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