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Summary

Coal mine drainage ranges widely in composition,
from acidic to alkaline, typically with elevated con-
centrations of sulfate (SO.), iron (Fe), mangancse
(Mn) and aluminum (Al) as well as common elements
such as calcium, sodium, potassium and magnesium.
The pH is most commonly either in the ranges 3 to
4.5 or 6 to 7, with fewer intermediate or extreme val-
ues. A key parameter is the acidity, which is the
amount of base required to neutralize the solution. In
coal minc drainage, major contributors to acidity are
from ferrous and ferric Fe, Al, and Mn, as well as
free hydrogen ions. The acidity should be determined
by a "hot acidity procedure", so that ferrous iron is
oxidized and its acidic properties properly measured.

Acidic mine drainage (AMD) is formed by the
oxidation of pyrite to release dissolved Fe**, SO,*
and H', followed by the further oxidation of the Fe**
to Fe* and the precipitation of the iron as a hydrox-
ide ("yellow boy") or similar substance, producing
more H'. Neutralization of the acidic solution by
limestone or similar materials can form neutral mine
drainage with high SO,, and possibly clevated Fe and
Mn. If appreciable Fe or Mn is present, these neutral
solutions can become acid on oxidation and precipi-
tation of the Fe and Mn.

Many factors control the rate and extent of AMD
formation in surface coal mines. More abundant py-
rite in the overburden tends to increase the acidity of
drainage, as does decreasing grain size of the pyrite.
Iron-oxidizing bacteria and low pH values speed up
the acid-forming reaction. Rates of acid formation
tend to be slower if limestone or other neutralizers are
present. Access of air containing the oxygen needed
for pyrite oxidation is commonly the limiting factor in
rate of acid generation. Both access of air and expo-
sure of pyrite surfaces are promoted by breaking the
pyrite-bearing rock. The oxygen can gain access ei-
ther by molecular diffusion through the air-filled pore

space in the spoil, or by flow of air which is driven
through the pore space by temperature or pressure gradi-
ents.

Because of the complex interactions of all these and
other factors, prediction and remediation of AMD is site
specific. An evaluation of a given site or proposed pro-
cedure can be aided by understanding the processes and
concepts discussed in this chapter.

Introduction

Coal mine drainage can be acidic or alkaline and can
seriously degrade the aquatic habitat and the quality of
water supplies because of toxicity, corrosion, incrusta-
tion and other effects from dissolved constituents.

Acidic mine drainage (AMD), in which mineral acid-
ity exceeds alkalinity, typically contains elevated con-
centrations of SO,, Fe, Mn, Al and other ions. AMD
may or may not have a low pH (high concentration of H'
ions), since the presence of dissolved Fe, Al and Mn can
generate hydrogen ions by hydrolysis. The major source
of acidity is oxidation of pyrite (FeS;) in freshly broken
rock that is exposed by mining. Pyrite oxidation can be
rapid upon exposure to humid air or aerated water, par-
ticularly above the water table.

In contrast, neutral or alkaline min¢ drainage
(NAMD) has alkalinity that equals or exceeds acidity
but can still have elevated concentrations of SO,, Fe, Mn
and other solutes. NAMD can originate as AMD that
has been neutralized by reaction with carbonate miner-
als, such as calcite and dolomite, or can form from rock
that contains little pyrite. Dissolution of carbonate min-
erals produces alkalinity, which promotes the removal of
Fe, Al and other metal ions from solution, and neutral-
izes acidity. However, neutralization of AMD does not
usually affect concentrations of SO,
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Chemistry of Coal Mine Drainage

The chemustry of water samples from unmined,
surface-mined or underground-mined areas in the
coalfields of western Pennsylvania is extremely vari-
able (Table 1.1, Figure 1.1). Rain in Pennsylvania is
generally acidic (Peters and Bonelli, 1982; Lynch et
al., 1990) but is typically much more dilute than
spring water or ground water (Table 1.1). In un-
mined areas, spring water and ground water are typi-
cally alkaline or only slightly acidic and contain
much lower concentrations of dissolved solutes than
water from mined areas. In unmined areas, spring
water commonly is only slightly more mineralized
than rainfall, and is dilute relative to nearby ground
water at depth beneath hills (Chapter 10).

Under mined conditions, ground water ranges
from alkaline to acidic. For example, samples re-
ported in Table 1.1 have pH ranging from 2.2 to 7.0.
Compilations of data show that pH values commonly
have a bimodal frequency distribution; most samples

are either distinctly acidic (pH 2.5 to 4) or near-neutral
(pH 6 to 7), with relatively few samples having pH val-
ues between 4 and 6 (Figures 1.2a, 1.3a) (Brady et al.,
1997). In contrast, the acidity (or net alkalinity, equal to
alkalinity - acidity) is unimodal, with a peak between
-100 and +100 mg/L CaCO; (Figure 1.2b). The net al-
kalinity generally decreases with decreasing pH, with
few exceptions, but in a non-linear manner (Figure 1.2¢,
1.3b). In the acidic waters, SO, is the principal anion,
and Fe, Mn and Al are major cations (Figure 1.1). In
alkaline waters, HCO; is a significant anion along with
S0, and concentrations of Ca, Mg, and Na are gener-
ally elevated relative to Fe and Al

Characteristically, the quantity and quality of discharge
from coal mines in Pennsylvania varies widely with time
(Brady et al,, 1990, 1994; Homberger et al., 1990). In the
extreme, at a single sampling site, net alkalinity can alte -
nate from alkaline to acidic at different times (Figure 1.4).
Specific factors that cause water-quality variations at surface
mines are discussed in subsequent sections.




140 200 L
i 1000
120 o ® i 5009 .
[
100 2 150 5 .
E z
[ -
80 a € 500
60 3 10 £ -oo
40 g ® -1500 ..:.‘
§ so = 2000 "_
20 z o
2500 :
o 0 - - - -3000 22
0 -3000-2500-2000-1500-1000 -500 © 500 1000 0 2 4 6 8 10
Net Alkalinity pH
500 300 4 S00
@ @ ®
400 250 400
200
_ 300 - _ 300
H 3 150 5
© 200 o < 200
100
100
50 100
oo S0 100 150 200 250 300 350 400 o 0
Fe (mg/1) 0 S0 100 150 200 250 300 350 400 0 50 100 150 200
Mn (mg/1) Al (mg/1}
150 4
(&
100
=1
=
(-]
(&)
50
0 - —
6

2000 40884(;"690})8 6000 10000

23vut.( Uy 100D Jo Aystuayo0y) - | 4a1doy




Chapter 1 - Geochemistry of Coal Mine Drainage

T2

@ EXPLANATION
ey MINE 4, GLEARFIELD, N=dd1
=3 MINE 3, CLARION, N=290
zAa MINE 2, CLARION. N=371

g 15 mas MINE 1, CLARION, N=151

ud

Q

i

w

n

2.

P

Q

z

(1)

2

g 7

Es %

.
. %%
1.0 1.5 2.0 25 30 3.5 4.0 45 50 55 60 65 70 7.5 8.0 85 9.0
pH
1,000
ALKAUINE h
ACIDIC :
1
1,000 b 1
1
1
2,000 :
1
- )
g -a.000 !
|
3 |
1
é 4,000 1
. t
E % i
g 5000} a !
] Be®© ]
2 a 1
5 8000 gl ee )
z ooy, :
7,000 } @ !
Cl. 1
ac 1
af © i
8,000 a | EXPLANATION 4
I o MINE1
o ' MINE 2
9,000 1 0
: ® MINE 3
| & MINE4
~10,000 ¢ 2 3 ) 5 6 7 3

Production of Acidity

The geochemistry of AMD has been the subject of
numerous investigations. Some general references on
the subject include publications by Temple and Koe-
hler (1954), Singer and Stumm (1970), Kleinmann et
al. (1981), Nordstrom (1982), Williams et al. (1982),
Homberger et al. (1990), Alpers and Blowes (1994),
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Blowes and Jambor (1994), Evangelou (1995), and
Nordstrom and Alpers (1996).

AMD results from the interactions of certain sulfide
minerals with oxygen, water, and bacteria (Figure 1.5).
The iron disulfide minerals pyrite (FeS,) and, less
commonly marcasite (FeS,), are the principal sulfur-
bearing minerals in bituminous coal (Davis, 1981,
Hawkins, 1984). Pyrrhotitc (FeS), arsenopyrite
(FeAsS), chalcopyrite (CuFeS,) and other sulfide min-
erals containing Fe, Cu, As, Sb, Bi, Se and Mo also
can produce acidic solutions upon oxidation, but these
minerals are uncommon in coal beds. Hence, because
of its wide distribution in coal and overburden rocks,
especially in shales of marine and brackish water ori-
gin, pyrite is recognized as the major source of acidic
drainage in the eastern United States.

The overall stoichiometric reaction describing the
oxidation of pyrite and marcasite is commonly given
as:

FeSxs) +3.750,+35H,0=
Fe(OH)s(s) + 2 SO.> + 4 H™ + heat 1.n

In reaction 1.1, solid pyrite, oxygen (O.) and water
(H;0) are reactants, and solid ferric hydroxide
(Fe(OH)s), sulfate (SO,”), hydrogen ions (H') and heat
energy are products. The heat energy produced in this
reaction for complete conversion of one mole of pyrite
to ferric hydroxide amounts to about 1490 kilojoules at
25°C, based on enthalpies in Robie et al. (1978) and
Naumov et al. (1974).

In most samples of coal mine drainage, an abun-
dance of dissolved ferrous iron (Fe**) (Table 1.1) indi-
cates that the chemical reactions are at an intermediate
stage in the series of reactions that together represent
pyrite oxidation (reaction 1.1). The following reac-
tions characterize various stages in the complete reac-
tion (Stumm and Morgan, 1981, pp. 470):

FeS,(s)+350,+HO =

Fe” + 280, + 2H' (1.2)
Fe* +0.250,+H" =Fe” +05H,0 (1.3)
FeS,(s) + 14Fe” +8 HO =

15Fe”+280}+ 16 H (14
Fe™ + 3 HO =Fe(OH),(s) + 3H' (1.5)
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Reactions 1.2 and 1.3, which involve the oxidation
of sulfur and iron, respectively, by gaseous or dis-
solved O,, can be mediated by various species of sulfur
and iron-oxidizing bacteria, notably those of the genus
Thiobacillus. These bacteria, which require only dis-
solved CO,, O,, a reduced form of Fe or S and minor
N and P for their metabolism, produce enzymes which
catalyze the oxidation reactions, and use the energy
released to transform inorganic carbon into cellular
matter (Temple and Delchamps, 1953; Kleinmann et
al., 1981; Nordstrom, 1982; Ehrlich, 1990).

In reaction 1.4, dissolved ferric iron (Fe**) produced
by reaction 1.3 is the oxidizing agent for pyrite (Figure
1.5). Kinetic studies (Garrels and Thompson, 1960;
McKibben and Barnes, 1986; Moses ct al., 1987;
Moses and Herman, 1991; Williamson and Rimstidt,
1994) show that at acidic pH, rates of pyrite oxidation
by Fe*" are much faster than oxidation by O, (reaction
1.2; sec Figure 1.9). Therefore, in well-established
acid-generating environments, the typical sequence is
pyrite oxidation by reaction 1.4 to produce Fe**, which
is then oxidized to Fe** by bacteria via reaction 1.3; the
Fe** is then available for further pyrite oxidation. Al-
though O, is not directly consumed in the pyrite-
oxidizing step, it is necessary for the regeneration of
Fe** to continue the pyrite-oxidation cycle.

As a final step, part or all of the Fe may precipitate
as Fe(OH); or related minerals (reaction 1.5). Because
of the relative insolubility of Fe**, most dissolved Fe in
solutions with pH greater than about 3.5 occurs as
Fe?*. AMD solutions commonly have pH and Eh
(oxidation potential) plotting along or near the Fe*'-
Fe(OH); boundary on an Eh-pH diagram (Figure 1.6;
also see Figure 1.10; Langmuir and Whittemore,
1971). Near-neutral Fe-bearing solutions (pH 5-6) are
normally relatively reduced, while more acidic solu-
tions are more oxidizing. At pH less than about 3 (the
exact value depending on Fe and SO, content), major
amounts of dissolved Fe** can be present.

The oxygen isotopic composition of dissolved SO,
in mine drainage varies in relation to the source of
oxygen (8'%0 of O, in air is 23 permil, 3'°0 of H,0=
-9.5 to -11.5 permil in the sampled area) (Table 1.1),
so that the oxygen in the SO, can indicate whether re-
action 1.2 or 1.4 is dominant (Taylor et al., 1984a.b;
van Everingden and Krouse, 1985; Taylor and
Wheeler, 1994; Reedy ct al., 1991). In reaction 1.2,
where O, is the oxidant, most of the oxygen in the SO,
is derived from molecular O,; in reaction 1.4 where
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Fe* is the oxidant, all oxygen in the SO, is derived
from H,0 (Figure 1.7). Oxygen isotopic data for dis~
solved SO, and H,O of drainage from surface mines in
Pennsylvania indicate that pyrite oxidation by both
reactions 1.2 and 1.4 is important (Table 1.1, Figure
1.7).

Hydrolysis and precipitation of iron solids, denoted
as Fe(OH), in reactions 1.1 and 1.5, generally do not
take place until the water is aerated and/or the acid is
neutralized. The iron solids, which commonly form a
reddish-yellow to yellowish-brown coating on rocks
and other surfaces, can consist of a varicty of amor-
phous or poorly crystalline ferric oxides, hydroxides or
oxyhydroxysulfate minerals including ferrihydrite
(variously given as Fe;(OH),, FesHO; 4H,0, or
Fes0;(0H)y), goethite (FeOOH) and schwertmannite
(FegOs(OH)sSO,) (Chukhrov et al., 1973; Eggleton and
Fitzpatrick, 1988; Brady et al., 1986, Murad et al.,
1994; Bigham et al., 1996). Ferrihydrite and schwert-
mannite are metastable and may ultimately dehydrate
and recrystallize forming hematite (Fe,05) or goethite.
In acidic weathering environments, ferric sulfate
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compounds may form metastable intermediates prior to
or in addition to ferric oxyhydroxide compounds
(Nordstrom et al., 1979; Nordstrom, 1982). Because
the ferric sulfate minerals tend to be soluble and typi-
cally form under evaporating conditions, they can be
significant sources of acidity and sulfate when later
dissolved by runoff or recharge water at surface mines
(Nordstrom and Dagenhart, 1978; Olyphant et al.,
1991; Cravotta, 1994). Furthermore, other forms of
sulfur, such as native S and S,0:>, can be intermediate
products in the oxidation of pyrite (Nordstrom, 1982;
Goldhaber, 1983; Moses et al., 1987), but these tend to
oxidize to SO, under surface conditions.

Measurement of Acidity

The acidity or net alkalinity of a solution, not the
pH, is probably the best single indicator of the severity
of AMD. Acidity is the total base requirement for
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neutralization of a solution, and includes the base
needed to neutralize acid produced by hydrolysis of Fe,
Al and Mn (reactions 1.3, 1.5, 1.6, 1.7).

AP" +3 H;,0 = AI(OH)s(s) + 3 H'
Mn® +0.5 0, + H,0 = MnOy(s) + 2 H'

(1.6)

1.7

In this chapter, acidity refers to a hot acidity in
which hydrogen peroxide and heating are used to oxi-
dize Fe and Mn, followed by titration with base to a
pH of 8.2 or 8.3 (U. S. Environmental Protection
Agency (EPA), 1979; American Public Health Asso-
ciation (APHA), 1980; ASTM, 1994). Note that the
various methods differ slightly: the EPA, APHA and
ASTM (Method C) procedures eliminate HCO; alka-
linity prior to the titration, whereas a U.S. Geological
Survey method (Fishman and Friedman, 1989) does
not climinate HCO; and does not oxidize iron. Some
differences also exist among laboratories in reporting
negative or zero acidity for samples with alkalinity ex-
ceeding acidity.

Alone, pH can be a misleading characteristic, be-
cause water that has near-neutral pH and ¢levated con-
centrations of dissolved Fe?* can become acidic after
complete oxidation and precipitation of the iron
(reactions 1.3 and 1.5). For example, in Figure 1.3,
many samples with pH of 5 to 6 and with measurable
alkalinity actually have significant acidity (net alkalin-
ity <0).

Although Fe**, Fe**, Mn*, AI**, and H" are the
major components of acidity in coal-mine drainage
(Ott, 1986), other dissolved species that precipitate as
hydroxides or oxides or change form during the acidity
titration, including Mg**, H,CO;, or H,S, can contrib-
ute to acidity (Payne and Yeates, 1970).

Acidity is commonly expressed as milligrams of
CaCQ; per liter of solution (mg/L as CaCQs) on the
basis of the following stoichiometric relation:

2 H' +CaCO, = Ca* + CO, + HO (1.8)

In accordance with reaction 1.8, 2 moles (2.0 g) of
H" are neutralized by 1 mole (100.1 g) of CaCO;. On
this basis, acidity (and alkalinity) can also be ex-
pressed as milliequivalents per liter (meqg/L), where 1
meg/L equals 50 mg/L as CaCOs.

The acidity, in mg/L as CaCO;, of acidic coal mine
drainage can also be approximated by the following
equation:

B 3¢, +2C,,, 3C, 2C_..
Acidity =30 =325t 2608 T 5404

+10¢-#"

(19)

where C is the concentration in mg/L of the subscripted
species and the divisor is the molecular weight of the
subscripted species. On the basis of equation 1.9 and
data in Table 1.1, calculated acidities generally are
comparable with measured acidities (Figure 1.8). For
the alkaline samples, however, because of the presence
of dissolved HCOj' as free anions and complex ions,
and OH as complex ions, calculated acidities typically
exceed measured values. In acidic samples, the pres-
ence of HSO, and OH complexes of Fe may cause
discrepancies.
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Factors Controlling The Rate of AMD Generation

Many factors determine the rate of AMD generation
from pyrite oxidation, including the activity of bacte-
ria, pH, pyrite chemistry and surface area, tempera-
ture, and O, concentration. The interactions of these
factors are complex.

Bacteria - In many situations, the most important
control on rate of AMD generation is bacterial oxida-
tion of Fe?* to Fe** by reaction 1.3, The resultant Fe**
can oxidize pyrite by reaction 1.4 (Figure 1.5).

Figure 1.9 illustrates the rates of various reactions
involved in AMD generation, including oxidation of
Fe* by O, in the absence of bacteria or other catalysts.
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At pH 6 the "half-life" of Fe** in an aerated solution at
25°C is about 7 hours, but at pH 4 or less the abiotic
"half-lifc" is about 8 years (Singer and Stumm, 1970).
Although Fe*" is formed rapidly at pH>4, Fe*' is rela-
tively insoluble under these conditions and tends to
form Fe(OH); or other solids (Figures 1.4 and 1.5), so
that little Fe** remains in solution to oxidize pyrite.
The net effect is that in the absence of bacteria, Fe*" is
either not produced at a significant rate (pH<4) or is so
insoluble that its dissolved form is relatively unimpor-
tant as an oxidant of pyrite (pH>4). However, Moses
and Herman (1991) suggest that even when Fe*" is
negligible in solution, the reaction involves oxidation of
adsorbed Fe™* to Fe** at the pyrite surface, with the
adsorbed F¢** in turn oxidizing the pyrite.

| FeS2 oxid. by Fe3* FeP*oxid.

(abiotic)

Eq. 1.4 Eq. 1.3

log k ==
faay Fo-*oxid.
@ ) {microbial)
-2
‘ FeS; oxid. by O2
-4

The bacterium Thiobacillus ferrooxidans and sev-
eral similar species have the capability of catalyzing
Fe?* oxidation (reaction 1.3) under acidic, acrobic con-
ditions, and obtain the energy for their metabolism
from this reaction. In the process, these bacteria
greatly speed up the reaction, so that under optimum
conditions the "half-life" of Fe*" is decreased to about 2
hr in an aerated solution with pH about 2.0 and Fe
concentration of about 2.5 g/L (Chavaric et al., 1993).
Because the rate of pyrite oxidation by Fe®" is gener-
ally fast relative to the rate of oxidation by O; or the
rate of inorganic Fe** to Fe* oxidation, the Fe**-Fe™*
oxidation is commonly rate-controlling (Singer and
Stumm, 1970), and the bacteria are crucial in deter-
mining the rate of acid formation. In addition to oxi-
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dation of dissolved Fe**, Thiobacilli also have the
ability to oxidize pyrite directly, 1.¢., they can accom-
plish reaction 1.2 while directly attached to the pyrite
surface (Ehrlich, 1990).

Effect of pH - As indicated above, at pH values of
4 to 7 the rate of pyrite oxidation by O, is slow, and
Fe** concentration is limited by the low solubility of
Fe(OH);. In increasingly acidic systems, Fe'" is in-
creasingly soluble (Figures 1.5, 1.9). Since Fe* can
rapidly oxidize pyrite, the oxidation of pyrite can be
greatly accelerated at low pH. However, below about
pH 1.5 to 2 the effectiveness of Thiobacillus ferrooxi-
dans as a catalyst of Fe*" oxidation decreases
(Silverman and Lundgren, 1959; Schnaitman et al.,
1969). Although pH values as low as negative 1.4
have been observed for AMD, these low values seem to
require special circumstances (Nordstrom et al., 1991).

Kleinmann et al. (1981) and Nordstrom (1982)
have suggested that the generation of AMD can be un-
derstood as three sequential stages. In stage I, while
the pH is near-neutral or only slightly acidic, pyrite
oxidation by reaction 1.2 proceeds by a combination of
abiotic and bacterial mechanisms, and Fe** oxidation is
primarily abiotic. Any biotic oxidation of pyrite is
dominantly by bacteria attached to the surface of pyrite
grains. In stage I, pH is generally in the range 3 to
4.5, and Fe** oxidation is mainly by T. ferrooxidans,
because abiotic oxidation is so slow. Pyrite oxidation
in this transition stage occurs by a combination of re-
actions 1.2 and 1.4, both abiotically and bacterially. In
stage 11, at pH less than about 3, the concentration of
Fe®* becomes high enough that reaction 1.4 becomes
the main mechanism for acid production, with bacterial
reoxidation of Fe?* furnishing the Fe'. In stages I and
II, the rate of AMD generation is relatively slow, but in
stage III the rate becomes very rapid. This stage is
responsible for production of the most acidic AMD. It
should be noted that this sequence is based on proc-
esses in unsaturated systems with an adequate supply
of O, and negligible alkaline material; in environments
of limited O, and/or significant carbonate or other al-
kaline material, a different sequence of processes may
occur.

Effect of Pyrite Surface Area and Crystallinity -
Kinetic studies indicate that the rate of acid generation
depends on the surface area of pyrite exposed to solu-
tion, and on the crystallinity and chemical properties of
the pyrite surface (McKibben and Barnes, 1986). This
dependence will be most important in initial stages
while pH is greater than about 2.5. In general, rock
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with a high percentage of pyrite will produce acidity
faster than rock with a low percentage of pyrite. Also,
a given mass of pyrite in small particles with high sur-
face arca will tend to oxidize more rapidly than the
same mass composed of coarse smooth-surfaced
grains. The high surface area of framboidal pyrite at
least partly accounts for its observed high reactivity
(Caruccio, 1975; Caruccio et al., 1976).

McKibben and Bames (1986) observed that pyrite
surfaces were pitted after reaction and suggested that
the abundance of defects might be crucial in determin-
ing the reaction rate, but kinetic experiments on a vari-
ety of pyrite samples using Fe** at pH 2 show similar
rates (Wiersma and Rimstidt, 1984), so the importance
of this effect under strongly acid conditions remains to
be demonstrated. Kitakaze et al. (1990), Graham
(1991), and Mishra and Osseo-Asare (1988) have
shown that pyrite can have vacant positions in its
crystal lattice and correlated variations in atomic
spacing and physical properties, suggesting another
possible cause for different oxidation rates for different
pyrite samples. Hammack et al. (1988) also found that
sedimentary pyrites were more reactive than could be
explained by surface area alone, and suggested that the
cause was a difference in crystal structure between
sedimentary and hydrothermal pyrite. Another possi-
ble variable is the content of trace clements in the py-
rite, especially elements such as As that are clearly
related to non-stoichiometry. The importance of these
factors remains to be demonstrated, though the experi-
ments of Wiersma and Rimstidt (1984) indicate that
large effects are probably not common.

Effect of Oxygen - Atmospheric O, is required for
the direct oxidation of pyrite and for regeneration of
Fe**. Thus, if air and oxygenated or Fe**-rich waters
can be excluded from pyritic material, pyrite oxidation
can be inhibited and little or no acid will be generated.

Pure water in equilibrium with air at a total pres-
sure of 1 atmosphere contains relatively low concen-
trations of dissolved O, ranging from 7.5 mg/L at 30°C
to 12.4 mg/L at 5°C (Truesdale et al., 1955). On the
basis of reaction 1.1, the complete oxidation of pyrite
by 10 mg/L dissolved O, will produce acidic water
with pH of 3.2 (H' = 6.4 x 10* mol/L) and concentra-
tions of acidity and SO, of 32 mg/L as CaCO; and 31
mg/L, respectively. Higher concentrations of the prod-
ucts require additional O, transfer from the air, or a
more complex mechanism, such as oxidation by previ-
ously generated Fe*'.
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Because the diffusion of O, in water is a slow proc-
ess, and the solubility of O, in water is low, the effec-
tive exclusion of atmospheric O, from pyritic spoil can
be achieved by perpetual immersion of the spoil in
stagnant ground water (Watzlaf, 1992). Conversely,
most AMD is generated in unsaturated mine spoil or
other environments where air is in contact with moist
pyrite-bearing rock.

Exclusion of O, by construction of "impermeable”
or organic-rich covers has not generally been success-
ful in preventing AMD generation in unsaturated spoil
or mine workings. Covers may fail to stop or slow
AMD formation because O, transfer is difficult to
eliminate and because the rate of pyrite oxidation is
independent of O, concentrations over the range 21 to
0.5 volume percent (Hammack and Watzlaf, 1990). In
the unsaturated zone, O, can be supplied relatively
rapidly by advection of air resulting from barometric
pumping or differences in temperature and by molecu-
lar diffusion through air-filled pores (Guo, 1993; Guo
etal,, 1994ab).

Effect of Microenvironments - Within unsaturated
spoil, water typically fills small pores and occurs as
films on particle surfaces. Flow rates of the water vary
from relatively rapid movement through interconnected
large pores, fractures, and joints to slow movement or
nearly stagnant conditions in water films or small
pores. Also, the abundance and distribution of pyrite
and other minerals varies from one particle to another.
Volumes with abundant pyrite, free movement of air,
and impeded movement of water are expected to de-
velop higher acidities than equal volumes that contain
less pyrite or that are completely saturated with water.
In addition, T ferrooxidans may attach directly to py-
rite surfaces and create its own microenvironment fa-
vorable to oxidation.

Because of these factors, the chemical environment
within spoil, and consequently, water quality in unsatu-
rated and saturated spoil commonly exhibit spatial and
temporal variability (Table 1.1, Figures 1.1 to 1.4).
Because of the small dimensions of the varying chemi-
cal environments, thorough characterization of chemi-
cal conditions (pH, O,, Fe**, etc.) in unsaturated spoil
may not be possible. The resulting coal-mine drainage
generally is a mixture of fluids from a variety of dy-
namic microenvironments within the spoil, so that pre-
diction of discharge water quality is difficult and
imprecise. Evans and Rose (1995) discuss experi-
ments that indicate the importance of microenviron-
ments in coal-mine spoil.
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Effect of Temperature - In general, the rates of
reactions that form AMD increase with increasing
temperature, so that AMD is formed faster if the py-
ritic material is warm. An exception to this trend is the
rate of Fe oxidation by T. ferrooxidans above about
35°C. These bacteria thrive at optimum temperatures
of 25 to 35°C, but they become inactive or die as tem-
peratures increase to about 55°C (Cathles, 1979).
Measurements indicate that oxidizing sulfide-rich ma-
terial can warm internally to temperatures at least as
high as 60°C because of the heat released by the oxi-
dation reactions (Cathles and Apps, 1975). Some sul-
fide-rich material actually undergoes spontaneous
combustion.

Formation of Secondary Minerals

Diagrams illustrating redox and pH conditions for
the Fe-S-O-H and Fe-S-O-H-K systems for conditions
similar to many AMD-generating environments are
shown on Figures 1.6 and 1.10. Pyrite is clearly not
stable in the presence of oxygenated air or measurable
Fe**. Solutions with Fe dominantly as Fe** can exist at
pH values up to about 8 (but these solutions become
acidic on oxidation and precipitation of the Fe). At pH
values higher than about 3.5, oxidation of Fe*" pre-
cipitates Fe as an oxide or hydroxide. At pH values
below about 3.5, appreciable concentrations of dis-
solved Fe can occur in the ferric state, as long as K is
low enough that jarosite does not precipitate. Note that
FeSO,'(aq) and FeHSO,*"(aq) actually dominate over
Fe**(aq) even at the relatively low SO, concentrations
assumed for these diagrams. Plotted on Figure 1.10
are a variety of observed values of Eh and pH for
AMD.

In addition to the Fe oxides and hydroxides
(hematite, goethite, amorphous Fe(OH);), several other
solid products are possible (Nordstrom, 1982). If ap-
preciable K* or Na' is present, jarosite
(KFe;(OH)s(S0O,),) or natrojarosite
(NaFe3(OH)s(SO4),) becomes stable under relatively
acid conditions (Figures 1.6, 1.10). Also, hydronium
jarosite ((H;O)Fe;(OH)s(S0,),) of poorly defined char-
acter may occur in solid solution with K- or Na-
jarosite (Alpers et al., 1994). At the higher Fe** and
S0, activities used for these diagrams, FeSO4(aq)
dominates over Fe**. In a diagram plotting hematite
which is more stable than the Fe(OH); assumed for
Figures 1.6 and 1.10, the ferrous (FeSO,) field is lim-
ited to pH values lower than about 3.3. Nevertheless,
newly precipitated Fe is most likely to be ferrihydrite
(Langmuir and Whittemore, 1971), schwertmannite
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(Bigham et al., 1996), or some other poorly crystalline
phase, so Figures 1.6 and 1.10 are generally relevant.
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At high Fe concentrations in solution, particularly
under evaporating conditions, several secondary sulfate
phases can precipitate from solution or form on the
surface of oxidizing pyrite in near-surface rock or mine
spoil. Some of the commonly observed phases include
melanterite (FeS0,4*7H,0), rozenite (FeSO4°4H,0),
szomolnikite (FeSO,*H,0), copiapite
(Fe"Fe™,(S04)s(OH),*20H,0), and coquimbite
(Fex(S04);*9H;0) (Nordstrom, 1982; Alpers et al.,
1994; Dixon et al., 1982; Bayless and Olyphant,

1993). Evaporation of AMD or oxidation of pyrite
under humid conditions are usually the mechanisms
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that form these phases. Cravotta (1991, 1994) has
observed the above phases plus roemerite
(Fe"Fe""(S04)4* 14H,0), pickeringite (MgAl(SO4)s
+22H,0) and halotrichite (Fe"Al,(S04);°22H,0) in
coal mine spoil in Pennsylvania.

The formation of these hydrous sulfate minerals can
be significant because they represent "stored acidity”
(Alpers et al., 1994). The "stored acidity" is released
when the minerals are dissolved by recharge or runoff,
and when the Fe or Al undergoes hydrolysis. For ex-
ample, the dissolution of halotrichite

FeAl,(S0,)4°22H,0 + 0.25 O, = Fe(OH); +
2 Al(OH), + 4 SO,> + 8 H' + 13.5 H,0
or coquimbite
Fez(SO4)3.9H20 =2 FG(OH)3 +3 S042' +
6H +3H,0 (1.11)
shows this effect. The storage and release of acidity by
these mechanisms can cause considerable temporal
variability in water quality, or alternatively, can cause
acid drainage to continue even after pyrite oxidation
has been curtailed.

Neutralization of Acidity and Production of
Alkalinity

Limestone and other materials that produce alkalin-
ity can affect the generation of AMD in two ways. If
water flowing into pyritic materials is alkaline, or al-
kaline conditions can be maintained in the pyritic mate-
rial, the acid-generating reactions may be inhibited so
that little or no AMD forms (i.¢., bacterial oxidation of
Fe*' is minimal). Alternatively, once AMD has
formed, its interaction with alkaline materials may
neutralize the acidity and promote the removal of Fe,
Al and other metals. Hence, water with high SO, and
low Fc may be indicative of earliecr AMD generation.

(1.10)

The carbonate minerals calcite (CaCO;) and dolo-
mite (CaMg(COs),) are the main minerals providing
alkalinity. Siderite (FeCOs) is also a possible source,
with qualifications discussed later. The carbonate
minerals may occur as layers of limestone or dolostone
in the overburden above coal, as cement in sandstone
or shale, or as small veins cutting the rock. The initial
reaction with an acid solution (using calcite as an ex-
ample) is:

CaCO; +2 H' = Ca¥ + H,COs(aq) (1.12)

If a gas phase is present, the H,CO; may partly de-
compose and exsolve into the gas phase, i.e..

H,COs(aq) = COx(g) + H,0y (L.13)

Upon further neutralization of AMD with carbonate
to pH values greater than 6.3, the product is bicarbon-
ate (HCOy):

CaCO; + H' = Ca* + HCOy (1.149)

In contrast with oxidation reactions, which are
mainly significant under unsaturated conditions, car-
bonate dissolution and production of alkalinity are sig-
nificant under both water-saturated conditions and
unsaturated conditions.

For a dilute water encountering limestone, Figure
1.11 indicates the approximate equilibrium concentra-
tion of HCO;’ (alkalinity) in the aqueous phase as a
function of the pH and Pco,, in the presence of calcite.
Waters containing significant concentrations of other
elements (Fe, Mg, SO,) may deviate from the concen-
trations on this diagram. This diagram also indicates
the approximate maximum amounts of dissolved alka-
linity that may be carried into pyritic spoils by
groundwater that has contacted carbonates, and the
amounts of alkalinity that may be generated in systems
such as anoxic limestone drains.

If one is concerned with the amount of calcite re-
quired to neutralize AMD of a given quality, as in the
calculation of Neutralization Potential (Sobck et al.,
1978) or the addition of alkaline materials to pyritic
spoil in order to prevent AMD formation, reactions
1.12 and 1.14 are also relevant. The amount of calcite
required to neutralize a given amount of acid mine
drainage depends on the behavior of CO; during neu-
tralization and on the pH reached. If the AMD is to be
neutralized to pH 6.3 or above (i.c., HCO; is the main
carbonate species produced) and no CO; is allowed to
exsolve to the gas phase, then the reaction may be
written (Cravotta et al., 1990):

FeS, + 4 CaCO; +3.75 0;+35H,0=
Fe(OH); + 2 SO,* + 4 Ca™ + 4 HCOy (1.15)

Under these conditions, neutralization of the prod-
ucts of oxidizing 1 mole of pyrite requires 4 moles of
CaCO0s, or 400 g of CaCO; to 64 g of pyritic sulfur, or
62.5 tons of CaCO; per 1000 tons of material with 1%
S as pyrite.

In contrast, if all CO2 escapes to the gas phase
and/or the AMD is only neutralized to about pH 5,
then the reaction may be written:

F382 +2 CaCO; +3.75 02 +15 H20 =

Fe(OH); +2 SO,” +2Ca™ +2 COfg) (1.16)
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Under these conditions, neutralization of AMD gen-
erated by oxidation of 1 mole of pyrite requires 2
moles of CaCOs, or 200 g of CaCOs, or 31.25 tons of
CaCOs per 1000 tons containing 1% pyritic sulfur.

Most natural situations probably fall between these
two extremes. Air within most strip mine spoil can
contain significant amounts of CO, (Lusardi and Er-
ickson, 1985; Cravotta et al., 1994a), so that some
CO; is clearly exsolving. If O, can get into the spoil to
drive the pyrite oxidation reaction, then some CO; can
escape into the open air. On the other hand, in order to
provide detectable alkalinity in the effluent, some
HCO;" must be present. Thus, the theoretical amount
of carbonate required to neutralize AMD generally
falls intermediate between the two endmember cases.

If the neutralizing material is lime composed mainly
of Ca0 or Ca(OH),, then the neutralization reaction is

Ca(OH), + 2H' = Ca® +2 H,0 (1.17)

If the standard tests for neutralization potential are
applied (Sobek et al., 1978) then AMD produced by
oxidation of 1000 tons of material with 1% S may be
neutralized by interaction with lime at a factor of 31.25
tons of CaCO; equivalent, equal to 23 tons of
Ca(OH),. However, note that Ca(OH), tends to react
with CO, from the air to form CaCOQ;, so that aged
"lime" can contain substantial CaCQ; (Rose et al.,
1995).

1-14

Siderite (FeCOs) is common in many coal-bearing
sequences in Pennsylvania (Morrison et al., 1990).
Dissolution of pure sideritc followed by precipitation
of Fe(OH); generates no net alkalinity, even if COz is
exsolved:

FCCO; +0.25 02 +2.5 HzO =
Fe(OH); + CO4(g) + H,O (118)

However, if siderite is exposed to H' and the reac-
tion proceeds in stages, with some CO, exsolution to
the gas phase, then some neutralization may temporar-
ily take place:

FeCO; + 2 H = Fe** + CO«(g) + H;O (1.19)

Although some H' has been consumed and the pH
will increase, note that the dissolved Fe** represents
acidity equivalent to the H' consumed, so no change in
acidity has occurred. When the Fe*" oxidizes and pre-
cipitates, then H' is regenerated. If the CO, does not
exsolve, then the dissolved H,CO; requires additional
alkalinity to convert it to HCO;™ and produce a neutral
solution. Thus, although it is possible that siderite
constitutes a temporary neutralizing agent, it is not
effective overall. Unfortunately, the conventional
Neutralization Potential test (Sobek et al., 1978) meas-
ures some NP for siderite, if present, since the test al-
lows evolution of CO, and does not promote oxidation
of Fe (reaction 1.19). The testing of cffervescence
("fizz") of pulverized rock samples with dilute HCI can
indicate whether samples with measurable NP contain
siderite, since siderite does not effervesce with normal
acid strengths (see Chapter 6).

Most natural siderite is actually a solid solution
containing some Ca, Mg and Mn in addition to Fe
(Mozley, 1989; Morrison et al., 1990). Dissolution of
siderite can produce clevated concentrations of Mn in
groundwater at mines (Table 1.1, mine 1; Cravotta et
al., 1994a). To the extent that siderite contains Ca and
Mg in solid solution, its dissolution will contribute
some net alkalinity, analogous to reaction of the
CaCOj; or MgCOs component in the siderite. This al-
kalinity is validly measured by the NP test.

The dissolution of silicate minerals consumes acid-
ity by reactions like:

2 KAISi;0; (K feldspar) + 2 H' + H;0 =

2 K" + ALSi,05(0H), + 4 SiO, (1.20)
AleizOs(OH)4 (kaohmte) + 6 W =
3 AP +2Si0, + 5 H,0 (1.21)
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Mg, A,;Si05(OH).(chlorite) + 4 H + Si0, =
2 Mg* + ALLSi,0s(OH), + 2 H,0 (1.22)

Reactions of these types are responsible for most or
all of the dissolved K, Na, Al, Mg, some of the Ca, and
locally some of the Fe in AMD solutions. Although H
is consumed by these reactions, Al and Fe released by
dissolution will generate acidity upon hydrolysis.
However, the dissolution of alkali and alkaline earth
cations in such reactions reduces acidity. Nevertheless,
reactions with silicate minerals are relatively slow, so
they typically consume only a small part of the acidity
present in the solution. Crouse and Rose (1976) dem-
onstrate changes in the clay mineralogy of sediments in
acid streams because of this type of reaction.

In some situations, ion exchange can affect the
chemistry of AMD, by reactions of the type

Nao.“ALsSi‘]_;Si7.34Alo,65020(0H)4(SmCCtit€)
+0.33 Fe™*= Fey33ALSi7 34Aly 65020(OH)4 +
0.66 Na* (1.23)

The Na* and Fe** in the smectite are in exchange-
able form and can be replaced by other species in any
way that compensates the charge. This reaction re-
moves some Fe and acidity from the solution, and
stores it in the solid phase. Cravotta et al. (1994b)
report analogous Ca-Na exchange in AMD systems. In
the latter case, by removing Ca>* from solution, calcite
dissolution was more extensive, and alkalinity more
extreme than otherwise possible. Because smectites
are not generally stable in acid solutions, such reac-
tions probably are of minor importance until alkaline
conditions are reached.

In most situations, the SO, generated by pyrite dis-
solution remains in solution and is a good measure of
the amount of pyrite oxidized. However, in the pres-
ence of calcite and other Ca-bearing matcrials, gypsum
(CaS0,*2H,0) can precipitate and remove SO, from
solution. For example, Table 1.1 shows that water at
mine 1 is generally saturated with gypsum, and Evans
and Rose (1993) observed formation of gypsum in
spoil to which lime had been added. Precipitation of
Fe, Al and Mg sulfate compounds also can decrease
the concentration of SO, in AMD.

Models For AMD Formation

The rate of AMD generation and the chemical char-
acter of the AMD vary widely depending on the mine
hydrology, the relative abundance of acid-forming and
alkaline materials, and the physical characteristics of
the spoil. The intent of this section is to discuss how
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the key variables interact to define several idealized
models.

Oxygen is a key reactant in forming AMD. Because
of the low solubility of O, in water, only minor
amounts of O; can be carried into spoil dissolved in
infiltrating precipitation. Two main processes operate
in strip mine spoil to supply O, for pyrite or Fe** oxi-
dation. One process is the diffusion of O, molecules
from zones of higher O, concentration to zones of
lower O, concentration through air-filled pore space in
the spoil (Figure 1.12a). If diffusion is the dominant
process supplying O, then most oxidation tends to oc-
cur at shallow depths in the spoil, typically in the upper
1 to 8 meters (Figure 1.13). Below this depth, little O,
is present, and downward percolating solutions are
relatively reduced, containing mainly Fe®* and little
Fe’*. Erickson (1985) and Lusardi and Erickson
(1985) report O, concentrations that decrease from
21% to a few percent between the surface and 8 m
depth in coal refuse and reclaimed spoil at several
sites. Cravotta et al. (1994b) report O, concentrations
in spoil air that decrease from 21% at the surface to
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about 4% at 10 m depth in spoil at Mine 1 (Table 1.1)
in Clarion Co (Figure 1.14). High CO, concentrations
also build up at depth in spoil air at this site. The dis-
tribution of O, and CO; at these sites is consistent with
diffusional transport of the gases in spoil. Jaynes et al.
(1984a, b) discuss a computer model for this type of
O, transport. The pyrite oxidation rates at these sites
are probably controlled more by diffusion of O; than
by pyrite abundance and reactivity (Cravotta et al.,
1994b).

The second main process of O, transport is by ad-
vection or flow of air within spoil (Figure 1.12b). The
flow is driven mainly by the upward flow of air
warmed by the heat generated during pyrite oxidation.
Where advection is dominant, high concentrations of
0, can occur in deep spoil. Guo (1993) and Guo et al.
(1994a, b) describe spoil in Clearfield County (Mine 4
in Table 1.1) that has O, concentrations exceeding
18% at depths of 10 to 35 m (Figure 1.14), and
showed with computer simulations that thermally

driven convection is expected and can produce the ob-
served effects (Figure 1.13).

Jaynes et al. (1983) recorded similar high values of
0, at depth in spoil. Models and experiments by
Cathles and Apps (1975) showed that the advection
process also operates in pyrite-bearing waste dumps at
copper mines.

The advective mode of O, transport appears to pre-
dominate in spoil that contains a significant proportion
of sandstone or other strong rock that leaves apprecia-
ble open space between fragments. In contrast, the
diffusive mode of transport predominates in less per-
meable spoil composed of small fragments of weak
shale or similar rocks.

AMD generation may also be strongly influenced
by the position of alkaline materials relative to pyritic
materials. For example, in northwestern Pennsylvania,
glacial till containing small to moderate amounts of
limestone fragments overlies coal-bearing rocks. Sur-
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face mines in this region, even those with considerable
pyrite in the overburden, generally do net produce
AMD (Homberger, 1985; Williams et al., 1982;
Chapter 8). This lack of AMD generation appears to
result from the alkaline quality of water percolating
into the spoil after first passing through the carbonate-
bearing till.

The reaction of ferric oxides, hydroxides or sulfates
with pyrite is a possible means of producing AMD in
mine spoil (Figure 1.6). The ferric ions released by
dissolution of these phases could act as oxidant of py-
rite. The stoichiometry of the reaction with ferric hy-
droxide would be as follows:

FeS; + 14 Fe(OH); + 26 H' =

15 Fe”* +2 SO.* + 34 H,0 (1.249)

Note that this and similar reactions involving ferric
minerals consume considerable H' in order to occur,
but do produce additional acidity as Fe*" in solution
and are therefore only significant in acidic environ-
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ments. Temple and Koehler (1954) proposed that fer-
ric sulfate minerals could be significant sources of
acidity, sulfate and ferric ions. The subsequent oxida-
tion of pyrite by Fe** and/or hydrolysis of Fe** can
produce acidic water, even under water-saturated con-
ditions (Cravotta, 1994).

At a few surface mines, it appears that burial of
brush or other organic matter in spoil may generate
discharges with the characteristics of AMD. Although
the mechanism requires further study, organic matter
could, with microbial catalysis, reduce Fe(OH); or
other ferric compounds to produce ferrous iron in so-
Iution:

CH,0(organic matter) + 4 Fe(OH); + 8 H' =
4 Fe* + CO, + 11 H,0 (1.25)

The acidity increases by the formation of CO,;
however, if the CO, exsolves, this reaction produces no
pet additional acidity. Although the reaction produces
Fe*, it consumes considerable H" and it does not pro-
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duce SO,>. Some AMD containing low SO, but high
Fe may have formed by this mechanism.

Mine drainage containing relatively low SO, con-
centrations could be caused by dilution or by SO4-
reduction, which involves the reaction of AMD with
organic matter (Rose et al., 1996):

2 CH,0 + SO,” =H,S + 2 HCO;5 (1.26)

Evidence for sulfate reduction is the fact that H,S
or similar reduced sulfur gases can be smelled at some
localities. In addition, this reaction is known to pro-
ceed in wetlands and other natural environments where
SO,-bearing water encounters organic matter. For ex-
ample, Herlihy et al. (1987) report that about half the
SO, in an AMD-affected stream is removed by SO,
reduction in the sediments of a shallow lake in Vir-
ginia. Reduction of ferric iron by Fe*'-reducing bacte-
ria would be required before SO,-reducing bacteria
would be able to prevail over Fe-reducers (Chappelle
and Lovley, 1992). In most AMD, the H,S will react
immediately with Fe to precipitate FeS. Because most
AMD originates from oxidation of pyrite (FeS;) and
has more S than Fe, it is unlikely that SO4-reduction
will form an effluent with low SO, and high Fe. How-
ever, any unrcacted H;S can be oxidized to form
H,S0, where oxygen is available. Oxidation of or-
ganic S in coal could also form an acid SO,-bearing
solution (Harvey and Dollkopf, 1986).

Conclusions

Although in principle the formation of AMD by
pyrite oxidation is sumple, the preceding discussion
indicates that the possible processes are many and
complex. An understanding of the geochemistry is
aided by writing balanced chemical reactions using
reactants and products appropriate for the conditions.
The water quality is clearly dependent on geologic and
hydrologic conditions at a given site. Careful field ob-
servation and laboratory analysis combined with an
understanding of possible processes is necessary to
draw conclusions for a particular location.
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