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Concept of Autonomous Crack Measurement (ACM)

Measures crack response, a major source of homeowner anxiety
Augments regulatory measures of ground motion
Avoids complexity of ground motion
Measures response of the same crack to

both long term (climatological) and dynamic (vibratory) effects
Integrate with internet display to enhance community interaction

Conclusions

Climatological crack response overwhelms vibratory response for
both typical (~ 2.5 mm/s) and regulatory (< 12 mm/s) PPV's
Large climatologically induced crack response occurs more often than
maximum vibratory response
Since climatological response is larger than vibratory response at
12 mm/s and occurs more often, restriction to
current control limits produces less effect than nature.
Crack response follows strains in walls and structural response
Wind induces large crack response
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Figure 1-3 ACM captures the micro-
meter change in crack width produced
by both long-term climatological and

vibratory crack response. .
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Figure 1-5 Experimental observation that cracks extend as their width

increases forms the foundation of fracture mechanics as well as the ACM
measurement approach. Special visualization techniques were employed to
measure the extension of a crack (marked by the rightward extension of the
">") as its width (COD or “crack opening displacement) increases (marked by
“>" on the left. (Miller, 1989)
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Comparison of measured indoor crack response (red) with null response
(orange) over 7 month period shows little need for null sensor after field
verification. (Snider, 2004)
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Figure 10-3 Comparison of
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Figure 3-10 Illustration of hysteresis (left two graphs) and drift (right two
graphs), where behavior in the left graph of each pair is undesirable. (Baillot,
2004
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Figure 4-12 Long-term response of exterior stucco crack reveals
seasonal trend in transition from summer (August) conditions to winter
(February) as well as response to rainfall events (high humidity spikes in
desert climate). (Snider, 2003)
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Figure 4-13 Long-term response of external crack in stucco over
adobe brick at a window corner shows permanent offset after 16 mm
rain storm on 11 July. This is the only monitored crack to exhibit
such an obvious permanent change in response. (McKenna, 2002)
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Figure 1-9 The miniscule vibratory response compared to the
climatological response challenges graphical comparison. Even in this case
where ground motions were as high as 10 mm/s (0.4 ips), vibratory
crack response was still only 1/6 that of the daily temperature
response. (AMA, 2005)
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Figure 1-8
Comparison of
vibratory
responses of
cracks (upper 5
time histories) to
the excitation
ground motions
(lower 5 time
histories) shows
that the
responses last
only as long as
the excitation,
the form of
which varies with
the type of
construction or
blasting activity.
(Snider, 2003)
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Twelve months
of crack
response
reveals a
seasonal crack
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Figure7-1 Variation of the ratio of peak corner velocity divided by
associated peak ground velocity (Amplification Factor) with dominant
excitation frequency shows amplification to maximize at 8 Hz, the natural
frequency of single story structures. Responses from the Albuquerque, NM
case history (App. AN). (Aimone-Martin & Dowding, 2005)



T

Figure 1-11 Structural response,
measured by the time correlated
difference of the displacement
of the upper and lower wall
corners, can be employed to
calculate shear strain in the wall
containing the crack for
comparison with crack response.

Tensile Strain

£ ~ YsinB cos6

\E Shear Strain
(68— 06y 5)
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Figure 7-7 Comparison of peak crack displacement (y axis) with
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(right). Comparison of a wind gust event (top right) with occupant induced
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as observed in the Henderson test case.
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Over a 10 year period in north central Tennessee wind storms
(with multiple gusts) would produce maximum pressures of:

kmi/hr  kPa mph psi events
48 0.112 30 0.016 20

64 0.196 40 0.028 10

80 0.308 50 0.44 3

An air over-pressure wave of 133 dB produces a pressure
equivalent to 0.013 psi or 1.87 psf.
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Figure 2-1
Comparison of
vibration induced
cosmetic cracks
(left column)
with non blast-
induced cracks
monitored in this
study (right
column) shows
their similarity.
PPV's inducing
the cracking for
the left (top and
bottom) were
225 and 172
mm/s.
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Figure 2-2 Continuity of pattern of crack response despite blast
excitation of more than 12 mm/s (0.48 ips) demonstrates
overwhelming nature of natural climatological effects. (Louis, 2002)
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Figure 1-14 Components of wireless ACM units the size of a deck
of playing cards eliminate the need for wires shown in Figure 1-1.
Clockwise from lower left: sensor adaptor, data logger and
communications, displacement sensor, combined units in place across
a crack. (Dowding, Ozer and Kotowsky, 2005)
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Figure 1-2 Autonomous Crack Measurement (ACM) in its most
communicative form involves automatic 1) measurement of vibratory crack
response and ground motion as well as long-term environmental response
(left), 2) telecommunication of the data to the central computer (center)
for 3) storage and processing, and 4) linkage to the internet for viewing
by anyone with a password (right).

(Dowding and Siebert, 2000)



Figure 1-15 Comparison of graphics in ACM thesis (left) and mid 1980s
study (right) that required several weeks and eight months respectively
to condense and graph demonstrates the efficiency of collecting data
via autonomous systems. (Siebert, 2000)
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Figure 1-16 ACM web site provides access to reports as well as
archived and on-going projects: http://www.iti.northwestern.edu/acm.



Concept of Autonomous Crack Measurement (ACM)

Measures crack response, a major source of homeowner anxiety
Augments regulatory measures of ground motion
Avoids complexity of ground motion
Measures response of the same crack to

both long term (climatological) and dynamic (vibratory) effects
Integrate with internet display to enhance community interaction

Conclusions

Climatological crack response overwhelms vibratory response for
both typical (~ 2.5 mm/s) and regulatory (< 12 mm/s) PPV's
Large climatologically induced crack response occurs more often than
maximum vibratory response
Since climatological response is larger than vibratory response at
12 mm/s and occurs more often, restriction to
current control limits produces less effect than nature.
Crack response follows strains in walls and structural response
Wind induces large crack response
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