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Mine drainage problems
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Interested in the role of microbial activity in the (relatively)
passive treatment of mine water, and how we can enhance
Fe(II)- and Mn(II)-oxidizing activity for the removal of these
mine-drainage constituents



Study sites

 Glenwhite

— Mine discharge stream that empties into
vertical-flow treatment system

— Near Altoona, PA
* Fairview
— Discharge from anoxic limestone drain

— Flows through a shallow limestone bed
— Elk County, PA



Glenwhite



Glenwhite discharge
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Dissolved oxygen and water depth in Glenwhite
discharge stream
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Crystallinity of Fe phases in Glenwhite crusts
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“Sludge” density

Dissolved oxygen (M) (mmoles Fe(III)/ml sludge)
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Density of Fe(11I) crusts
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X-ray diffraction analysis of Fe(I1I) crusts in Glenwhite discharge stream
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The effect of Fe(II) oxidation rate on neutrophilic, nitrate-
dependent, biogenic Fe(II1) mineralogy

Goethite

0.04 mg protei

0.1 mg protein

0.2 mg protein<

10

3

0

Relative Intensity

Amorph. Crystal
e | Fe() | popm)
5% | 32% | 63%
4% | 50% | 46%
4% | 95% | 1%




The -trophy case

Chemo- vs. photo-trophy
— Where the energy comes from: chemical or solar energy
Litho- vs. organo-trophy

— Where the electrons come from: inorganic or organic
compounds

Auto- vs. hetero-trophy

— Where the cellular carbon comes from: fix CO, or
assimilate fixed carbon

I am a chemoorganoheterotroph.

Acidothiobacillus ferrooxidans is a
chemolithoautotroph



Aerobic Fe(1l) oxidation

* Energy from Fe(Il)
oxidation coupled to O,
reduction exploited for

growth
Fe(I1I)

Lithotrophic, many are
lithoautotrophic

* Acidothiobacillus
Fe(Il) ferrooxidans, Leptospirillum
ferrooxidans,
Ferrimicrobium
acidiphilium, Ferroplasma
acidiphilium




Enumeration of microorganisms
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Serial dilution of a suspension of material (soil, sediment, etc)

'1 102 103 104 105 106 107

Count number of colonies formed
Assume 1 CFU =1 cell
So, 20 colonies on 10~ plate =2 x 10° CFU/ml




Overlayer technique for cultivation of acidophilic
Fe(1I)-oxidizing bacteria (D.B. Johnson)

Problem: hydrolysis of solidifying agents (agar or agarose)
inhibits growth of Fe(II) oxidizers

Environmental samples can be
spread on heterotroph-free top
layer; medium contains Fe(Il) &
nutrients, but no organic electron
donor

/
/
Inoculated with Acidiphilium sp.

-acidophilic heterotroph
-consumes hyrolysis products




Acidophilic Fe(1l) oxidizers
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Glenwhite conclusions & future work

* Oxygen levels increase as water moves through
Glenwhite discharge stream

* A denser, more crystalline Fe(IlI) precipitate forms
in water containing less oxygen.

— Presence of goethite in low pH water

e Culturable Fe(II) oxidizing bacteria present in
similar numbers throughout discharge stream

e Future work:

— examine microbial community structure using nucleic
acid-based techniques

— Determine the importance of microbiological activity vs.
abiotic precipitation in Fe(IIl) precipitation at low pH

— Examine the effect of oxygen on activity and Fe(III)
products produced by acidophilic Fe(II) oxidizers



Fairview










Water chemistry in “ditches” in Mn removal beds,
Fairview site
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Biooxidation of Mn(1I)

CO C-H,,0
: »  Energy from Mn(II)

Mn(IV) oxidation coupled to O,
reduction not known to
be exploited for growth
(so far)

Organoheterotrophic,
neutrophilic

Mn(II)

* Leptothrix sp., Bacillus
Mn(IV)  sp., Pseudomonas sp.;
relatives of Rhodobacter
Sp., Agrobacterium sp.

Mn(II)



Culture-dependent enumeration of Mn(1I)-
oxidizing bacteria

heterotrophs

* Two types of media
(Templeton et al., 2005):
— K medium
— Leptothrix medium

— Both contained 100 mg/1
cycloheximide (antifungal
antibiotic)

— Prepared using Fairview
water




Cell number

Enumeration of heterotrophic and Mn(1I)-
oxidizing aerobes in Fairview “ditches”
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Fairview conclusions

Mn removal beds effectively raise pH and remove
Mn(II) (from 1.6 mM to < 0.05 mM)

Mn(II)-oxidizing bacteria present in high numbers

Little Mn(II) oxidation, low D.O., and lower
numbers of Mn(Il)-oxidizing bacteria in hay-filled
trench

“Paradox” of stimulating Mn(II) biooxidation:

— Mn(II) oxidation takes place during late-log to stationary
phase of growth (organic carbon problems?)

— Need organic carbon to sustain sufficient biomass to
catalyze Mn(II) oxidation at reasonable rates



Future work

e Establish the role of
Mn(1I)-oxidizing bacterial
activity in Mn removal at
this site

— Differentiate between
biological and abiotic
activity

— Sterile controls?

e Establish optimal
conditions (e.g. D.O.,
organic substrate) for
Mn(1I)-oxidizing activity

Mn(II)-oxidizing isolate




Characterization of Mn crusts from

Fairview
todorokite
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Future work

e Establish the role of
Mn(1I)-oxidizing bacterial
activity in Mn removal at
this site

— Differentiate between
biological and abiotic
activity

— Sterile controls?

e Establish optimal
conditions (e.g. D.O.,
organic substrate) for
Mn(1I)-oxidizing activity

Mn(II)-oxidizing isolate
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