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Mine drainage problems
• Acidity
• Sulfate
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• Fe(II)
• Mn(II)

Interested in the role of microbial activity in the (relatively)
passive treatment of mine water, and how we can enhance
Fe(II)- and Mn(II)-oxidizing activity for the removal of these 
mine-drainage constituents



Study sites

• Glenwhite
– Mine discharge stream that empties into 

vertical-flow treatment system
– Near Altoona, PA

• Fairview
– Discharge from anoxic limestone drain
– Flows through a shallow limestone bed
– Elk County, PA





Glenwhite discharge
stream

pH - 3.0 - 3.5
SO4

2- - 3.4 mM
Fe(II)sol - 2 mM
Fe(III)sol - 40 µM



Mineral crusts 
recovered from 
drainage 
stream
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Dissolved oxygen and water depth in Glenwhite 
discharge stream
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Crystallinity of Fe phases in Glenwhite crusts
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X-ray diffraction analysis of Fe(III) crusts in Glenwhite discharge stream
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The -trophy case
• Chemo- vs. photo-trophy

– Where the energy comes from: chemical or solar energy

• Litho- vs. organo-trophy
– Where the electrons come from: inorganic or organic 

compounds

• Auto- vs. hetero-trophy
– Where the cellular carbon comes from: fix CO2 or 

assimilate fixed carbon

• I am a chemoorganoheterotroph.
• Acidothiobacillus ferrooxidans is a 

chemolithoautotroph



Aerobic Fe(II) oxidation

Fe(II)

Fe(III)O2

H2O

• Energy from Fe(II) 
oxidation coupled to O2
reduction exploited for 
growth

• Lithotrophic, many are
lithoautotrophic

• Acidothiobacillus 
ferrooxidans, Leptospirillum 
ferrooxidans, 
Ferrimicrobium 
acidiphilium, Ferroplasma 
acidiphilium



Enumeration of microorganisms

100 10-1 10-2 10-3 10-510-4 10-6 10-7

Serial dilution of a suspension of material (soil, sediment, etc)

Spread on solid medium

Count number of colonies formed
Assume 1 CFU = 1 cell
So, 20 colonies on 10-4 plate = 2 x 105 CFU/ml



Overlayer technique for cultivation of acidophilic 
Fe(II)-oxidizing bacteria (D.B. Johnson)

Problem: hydrolysis of solidifying agents (agar or agarose) 
inhibits growth of Fe(II) oxidizers

Inoculated with Acidiphilium sp.
-acidophilic heterotroph
-consumes hyrolysis products

Environmental samples can be 
spread on heterotroph-free top 
layer; medium contains Fe(II) & 
nutrients, but no organic electron 
donor



Acidophilic Fe(II) oxidizers
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Enumeration of aerobic Fe(II)-oxidizing bacteria in 
Glenwhite discharge
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Glenwhite conclusions & future work
• Oxygen levels increase as water moves through 

Glenwhite discharge stream
• A denser, more crystalline Fe(III) precipitate forms 

in water containing less oxygen.
– Presence of goethite in low pH water

• Culturable Fe(II) oxidizing bacteria present in 
similar numbers throughout discharge stream

• Future work:
– examine microbial community structure using nucleic 

acid-based techniques
– Determine the importance of microbiological activity vs. 

abiotic precipitation in Fe(III) precipitation at low pH
– Examine the effect of oxygen on activity and Fe(III) 

products produced by acidophilic Fe(II) oxidizers
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Biooxidation of Mn(II)
• Energy from Mn(II) 

oxidation coupled to O2
reduction not known to 
be exploited for growth 
(so far)

• Organoheterotrophic, 
neutrophilic

• Leptothrix sp., Bacillus 
sp., Pseudomonas sp.; 
relatives of Rhodobacter
sp., Agrobacterium sp.

Mn(II)

Mn(IV)O2

H2O
O2 H2O

CO2
C6H12O6

Mn(IV)

Mn(II)

Mn(IV)



Culture-dependent enumeration of Mn(II)-
oxidizing bacteria

• Two types of media 
(Templeton et al., 2005):
– K medium
– Leptothrix medium
– Both contained 100 mg/l 

cycloheximide (antifungal 
antibiotic)

– Prepared using Fairview 
water

heterotrophs

Mn(II) oxidizers
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Fairview conclusions

• Mn removal beds effectively raise pH and remove 
Mn(II) (from 1.6 mM to < 0.05 mM)

• Mn(II)-oxidizing bacteria present in high numbers
• Little Mn(II) oxidation, low D.O., and lower 

numbers of Mn(II)-oxidizing bacteria in hay-filled 
trench

• “Paradox” of stimulating Mn(II) biooxidation:
– Mn(II) oxidation takes place during late-log to stationary 

phase of growth (organic carbon problems?)
– Need organic carbon to sustain sufficient biomass to 

catalyze Mn(II) oxidation at reasonable rates



Future work
• Establish the role of 

Mn(II)-oxidizing bacterial 
activity in Mn removal at 
this site
– Differentiate between 

biological and abiotic 
activity

– Sterile controls?
• Establish optimal 

conditions (e.g. D.O., 
organic substrate) for 
Mn(II)-oxidizing activity

Mn(II)-oxidizing isolate



Characterization of Mn crusts from 
Fairview
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Future work
• Establish the role of 

Mn(II)-oxidizing bacterial 
activity in Mn removal at 
this site
– Differentiate between 

biological and abiotic 
activity

– Sterile controls?
• Establish optimal 

conditions (e.g. D.O., 
organic substrate) for 
Mn(II)-oxidizing activity

Mn(II)-oxidizing isolate
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